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Abstract

The exposome, the environmental complement of the genome, is an omics level characterization of an individual’s exposures. There
is growing interest in uncovering the role of the environment in human health using an exposomic framework that provides a sys-
tematic and unbiased analysis of the non-genetic drivers of health and disease. Many environmental toxicants are associated with
molecular hallmarks of aging. An exposomic framework has potential to advance understanding of these associations and how mod-
ifications to the environment can promote healthy aging in the population. However, few studies have used this framework to study
biological aging. We provide an overview of approaches and challenges in using an exposomic framework to investigate environmen-
tal drivers of aging. While capturing exposures over a life course is a daunting and expensive task, the use of historical data can be a
practical way to approach this research.
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Introduction
The human body reacts constantly to changes in its environment.
Microbial invasions induce immunological responses [1]; social
threats trigger the neuroendocrine cascade of the stress response
[2] and can alter immune stance [3]; toxin, toxicant, and pollutant
exposures elicit protective responses across multiple systems [4]
and can induce adverse effects [5]; and change in ambient tempera-
ture can disrupt homeostasis [6]. On a cellular level, actions are
taken every second based on signals received from the environ-
ment. Several factors can influence the effect of these exposures
and the body’s response, importantly, the levels of certain
nutrients, and the overall nutritional status [7]. Environmental sig-
nals driving changes in our biology are constant while being vari-
able in space and time [8]. Traditionally, scientists have studied the
influence of the environment on human health using a reductionist
approach, exploring the effect of a single environmental exposure
on a health outcome. However, the recent emergence of the expo-
some concept provides an alternative framework to holistically
study the environment. The exposome encompasses all exposures,
throughout the life course [9], and includes internal processes, like
endogenous metabolism and microbial-derived metabolites, spe-
cific external exposure, like exposure to toxic environmental chemi-
cals and dietary nutrients, and wider social factors that can
influence an individual, like financial status and education [10]. It
represents the environmental complement to the genome, that is, a
comprehensive characterization of the molecular exposures to
which an organism is subject [11-13]. For the purpose of this review,
we define the exposome as all exposures, including lived experien-
ces, that can be assessed throughout the life course, but recognize

the need to focus on those exposures that can be measured with
current technologies. We focus primarily on toxic exposures but we
acknowledge other important factors that can influence the expo-
some or the body’s response to exposure, such as: (i) nutritional sta-
tus [7] and the microbiome [14] and (ii) other factors of the external
exposome such as education [15] and family environment [16].
While there have been some attempts at characterizing the biologi-
cal footprint of these factors [17], they remain difficult to measure.
Newer studies provide hope and directions on how these factors
may be tested in the future [18].

The many chronic diseases of aging are thought to derive from
common underlying processes that precipitate molecular changes
over time [19]. These common mechanisms have been classified
into nine hallmarks of aging: genomic instability, epigenetic altera-
tions, telomere attrition, loss of proteostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem cell
exhaustion, and altered intercellular communication [20]. Aging is
influenced by genetic factors [21]; however, current estimates are
that <10% of differences in longevity between individuals can be at-
tributed to inherited genes [22]. Environmental factors are therefore
critical determinants of aging processes [23].

The exposome and aging
The human body can activate compensatory pathways that pro-
vide a form of resilience against damaging factors that accumu-
late with age. It is proposed that individual differences in this
process of resilience determine whether a life course would end
relatively healthy, frail, or in early mortality [24, 25]. Adverse
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environmental exposures can induce damage and impose addi-
tional stress on resilience processes, reducing the reserve needed
to counter the effect of biological aging, thus, increasing the risk
of poor or accelerated aging.

Time is an important variable that can influence the effect of envi-
ronmental exposures. Both the timing of exposure during a life course
as well as the duration of an exposure can determine the physiologi-
cal response. It is important to identify critical time windows of expo-
sure across the life course that might influence an outcome of
interest since the scale of the response to an exposure would depend
on whether the exposure occurred in utero, during development, in
mid-life, or later in life [26, 27]. Damaging environmental exposures
may be for a short period of time (an acute exposure) or over a pro-
longed period (a chronic exposure). The response to an acute or tran-
sient exposure may subside once the exposure has been removed
from the system through metabolism and excretion but may leave
signs of lasting damage that can be detected through molecular
probes, like epigenetic marks of exposure to cigarette smoke in former
smokers [28] or epigenetic changes in immune cells in response to
pathogenic exposure [29] whereas response to a chronic exposure is
usually maintained to counter the effects of long-term exposure.
Thus, exposures may induce temporary or permanent changes in
molecular pathways. Both aspects of time can influence whether
damage is caused and the organism’s response to the exposure.

Several studies have reported associations between environmen-
tal exposures and different hallmarks of aging. For example, expo-
sure to air pollution [30], pesticides [31], heavy metals [32],
industrial solvents [33], and viruses and bacteria [34] has been asso-
ciated with mitochondrial dysfunction but no study has investi-
gated the effect of their concomitant exposure on mitochondrial
function. Different environmental exposures are correlated, for ex-
ample, people who live in polluted places tend to lead stressful lives
and have reduced access to healthy nutrition, exercise, and leisure.
For this reason, studying any one exposure may (a) confuse the ap-
parent effects of the specific exposure with some other, correlated
exposures and (b) fail to capture the myriad of exposures that repre-
sent the actual environmental burden. In order to illustrate the con-
tributions of various exposures to hallmarks of aging, we have
organized observed associations between exposures and the hall-
marks of aging (Figure 1). This was created by first categorizing
exposures into nine classes: air pollution, pesticides, metals/metal-
loids, mutagens, industrial solvents, plasticizers and related com-
pounds, ambient temperature, microbes, and cigarette smoke. Each
of these categories can comprise of multiple exposures and are
grouped due to similarity in source, or chemical structure or proper-
ties. In order to confirm an association between the exposure class
and a hallmark of aging, we ran multiple searches in PubMed using
a combination of the name of each chemical category and, “aging,”
“hallmarks of aging,” or “toxicity.” The figure illustrates that differ-
ent environmental exposures affect many different hallmarks of ag-
ing; therefore, an exposomic framework is needed to study
environmental drivers of aging. Additionally, the influence of the
exposome on the aging process would be modified by the underly-
ing nutritional status and needs to be studied under these contexts
[7, 35]. To the best of our knowledge, studies of aging have rarely
adopted an exposomic framework.

Measuring the exposome
Compiling exposomic data requires integrating information from
multiple sources. Broadly, the sources of data can be geospatial
in origin or from personal monitoring [11, 36, 37].

“Geospatial data” can be used to infer individual-level expo-
sure from ecological data. Using data describing the spatial distri-
bution of a toxicant, an estimate of an individual’s exposure to
that toxicant can be made using their residential address. These
data have been used to estimate exposure to air pollution, pesti-
cides [38], access to green space, proximity to pollution sources,
proximity to a contaminated water source, and proximity to
landfills [39–41]. Data needed to measure the spatial distribution
of a toxicant come from:

a) Satellites in Earth’s orbit which provide valuable information
about the Earth’s land surface, oceans, and atmosphere.
Using optical density, radiation, and imagery data generated
through satellite technology, researchers have been able to
provide estimates of exposure to pollutants in the atmo-
sphere, humidity, temperature, light exposure at night, even
exposure to wildfires [42, 43]. Significant advances in the use
of satellite data continue to be made, providing a means to
get highly granular historical exposure data [44].

b) Ground-based monitors and sensors distributed through na-
tional and regional networks have traditionally been used
to monitor levels of various air pollutants and provide valu-
able data that can be used to attribute exposure to study
participants using kriging methods [18, 19, 45]. The intro-
duction of low-cost and mobile sensors has made it possible
to add more nodes to the network of monitors and provide
more granular estimates of air quality [46, 47].

“Personal monitoring data” provide individual-level exposure
assessment that can be made through several methods:

a) Records and surveys like the national health and nutrition ex-
amination survey, census surveys, records maintained by
social services and criminal justice administrations, or per-
sonal records made through population studies can provide
valuable information related to diet, lived experiences, ad-
verse childhood experiences, and psychosocial stress.
Census data and other administrative survey data can also
be used to determine neighborhood level characteristics,
like the racial/ethnic composition of a neighborhood [48,
49]. Personal health records, like electronic health records
(EHRs), also provide a means to estimate exposures on a
personal level, such as exposure to pharmaceutical drugs,
recreational drugs, alcohol, or cigarette smoke. EHR also
provide the aging relevant outcome data [50].

b) Wearable devices and smartphones have made it possible to
make personalized estimates of exposure. Data collected
through accelerometers, GPS devices, and wearable sensors
provide better estimates of individual level exposure [8, 51,
52]. This data can overcome issues related to geo-spatial
data that do not account for movement and activity outside
of the residence; however, most methods still need rigorous
validation [53].

c) Biological samples like blood, urine, sweat, saliva, feces, hair
samples, or toenails provide a means to measure the burden
of chemical exposures in an individual as well as the biologi-
cal response as the result of an exposure. Improvements in
high-resolution mass spectrometry instruments have made
it possible to capture a large proportion of persistent pollu-
tants in a tissue sample using appropriate chromatography
[54]. Rapid progress in chemoinformatic software is improv-
ing confidence in annotations and expanding the known
chemical space [55–57]. The relative levels of different chem-
icals in a biological matrix are a function of the time since
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exposure, the half-life of the chemical in various biological
compartments, and the method used to detect and measure
the chemicals [58].

These data sources enable measuring exposures on a national,
regional, or individual level, and at specific time points in a life
course. In this paper, we provide an overview of how an exposo-
mic framework could be applied to studies of environmental driv-
ers of aging. We also illustrate the utility of model organisms to
follow up observations made in epidemiological settings.

An ideal scenario
While a randomized clinical trial (RCT) is the gold standard de-
sign to uncover causal associations, it is unethical to conduct
RCTs of exposure to many environmental toxicants. Instead, the
scientific community relies on quasi-experimental observational
studies. In order to apply an exposomic framework, study designs
that are disease-agnostic and focused on generating a represen-
tative sample of the population of interest to enable hypothesis-
free analysis of a broad range of exposure will be critical. There
are several ways this could be achieved. One possibility is to cre-
ate birth cohorts that are prospectively observed through their
life course [59] with the following considerations:

i) The cohorts should be representative of the target popula-
tion of interest with representation of marginalized com-
munities within the target population.

ii) Tissue samples should be collected at birth, including the
meconium, placental tissue, dried blood spots, maternal
blood, and cord blood, in order to assess developmental

origins of health and disease [60]. Biological samples
should be collected over the course of development and
adulthood. These matrices should be analyzed for: levels of
environmental chemicals using high-resolution mass spec-
trometric techniques and characterization of genomic, epi-
genomic, extracellular vesicular properties, proteomic, and
metabolomic status. An important variable to consider
when collecting these matrices would be the unit of time
at which this data should be collected [8].

iii) Exposure data associated with each individual in the co-
hort could be collected using multiple methods described
earlier (Figure 2), ideally at fine-grained spatial and tempo-
ral resolution. This requires continuous updating of resi-
dence information and may also involve harmonization of
exposure data across different types of monitors. Attention
should also be paid to adverse childhood experiences and
lived experiences, which can be collected through ques-
tionnaires [61].

iv) Wearable devices and sensors in the homes of participants
should also be deployed to provide real-time exposure data
to supplement the ecological level exposure data derived
from geospatial linkages [8].

A realistic scenario
Birth cohorts are expensive, resource intensive, and prone to at-
trition. A complementary approach to investigate the exposome
in an aging context can leverage existing infrastructure and data.
Indeed, population-based cohorts with representation of different
age windows are critical for an unbiased exploration of the

Figure 1. A selection of environmental exposures and hallmarks of aging. The nine hallmarks of aging represent common mechanisms of biological
aging in the mammalian context. The inner most gray circle illustrates these hallmarks of aging. In the outer circle, icons represent environmental
exposures that have been associated with each corresponding hallmark of aging. Each category can comprise of multiple exposures and are grouped
due to similarity in: source, use, chemical structure or properties, or associated health effects. Created with BioRender.com
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exposome. Over decades, several cohort studies have been estab-
lished that can provide the necessary data for this (Table 1). By

creatively using existing data, for example, leveraging natural

experiments created through changes in policies [62, 63], we can

allocate resources toward the infrastructure needed to character-

ize the exposome, such as creating exposomic profiles of biologi-

cal samples available in existing cohorts [64, 65]. Apart from

integrating exposure estimates to cohort studies, it will be also be

beneficial to consider ways to integrate data across cohorts repre-

senting different time points in the life course. This could be

achieved by conducting parallel analyses that draw samples

from cohorts at the different life course stages, like those con-

ducted under the HELIX project in Europe [66] and in a study that

leveraged data from people exposed to Arsenic in Chile and

Bangladesh [67].
When using existing resources, some considerations include:

i) Sample storage: When using banked samples, the stabil-
ity of toxicants and their metabolites should be consid-
ered. Even when samples are stored in �80�C freezers,
plasma-metabolite levels show storage-time-dependent
changes [95].

ii) Half-life of toxicant: Persistent environmental chemicals
have long half-lives in the body whereas non-persistent
chemicals are metabolized and excreted more quickly
[58]. This may limit the type of chemical exposures that
can be probed using banked samples that are not col-
lected to specifically capture non-persistent exposure.
By leveraging multiple biological matrices representing

different biological compartments (urine, blood, saliva,
and feces), we can theoretically improve coverage of the
chemical exposome.

iii) Data harmonization: Using administrative data, residen-
tial address and history information, personal GPS data
from mobile applications, and historical geospatial and
satellite data, we can estimate historical and present-day
exposures to several environmental factors. This data in-
tegration is no easy task. We face challenges in harmoni-
zation across different exposure estimation methods.

iv) Privacy: It is important to also be aware of privacy con-
cerns that may prevent study participants from sharing
personal spatial data [96]. To successfully implement the
use of geospatial data, researchers must convey and use
methods to protect geoprivacy and disaggregate identifi-
able information while remaining analytically sound [97].
Further, the methods needed to access and integrate geo-
spatial data with outcomes will differ based on population
contexts [98], for example, integrating data in countries
with universal health coverage will need methods differ-
ent from those needed in other contexts. The readers are
directed to papers by others in the field to choose an ap-
proach that protects geoprivacy [99, 100].

v) Statistical considerations: Studying the relationship be-
tween measures that are time varying, like the exposome,
and biological changes over time seen in aging poses sev-
eral analytical challenges. Depending on the nature of the
aging outcome, statistical methods that can be applied in
these settings include: mixed-effects models [101], cox

Figure 2. Data sources for exposure assessment. For each exposure that has been associated with hallmarks of aging listed in the first column, the
corresponding source of exposure data is represented by icons along the row. Created with BioRender.com
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proportional hazards models [102], survival analyses
[103], multi-state modeling techniques [104], or age-
period-cohort modeling [105]. Besides handling temporal
dynamics, the high-dimensionality of exposomic data
needs to be treated with appropriate statistical methods
[106]. Several papers have been written that describe new
methods for analyzing time-varying, high-dimensional
data [59].

vi) Survival bias/mortality selection: Observations of older
adults include only those individuals who have survived
to advanced ages. Exposomic parameters that are more
lethal may be under-represented in the oldest members
of research cohorts [107]. Thus, studies that are truly rep-
resentative of the population are crucial to understand
real-world exposures.

vii) Misclassification: Researchers must conduct sensitivity
analyses to determine the effect of exposure misclassifi-
cation or error in predictions based on sparse historical
data, or other decisions and assumptions made during ex-
posure estimation. Systematic errors that differentially
affect exposure measurements in sub-groups of popula-
tions may introduce bias in analyses, for example, people
with unstable residences may be assigned imprecise
measures of exposure.

viii) Study design limitations: When using a design that is a
mixture of prospective and retrospective measurement,
researchers would need to consider the limitations that
are inherent to such a design, such as recall bias and re-
verse causation [36].

Toxicological follow-up
Many aspects of biological aging were first discovered in model
organisms Caenorhabditis elegans and Drosophila melanogaster.
Model organisms remain an important tool in uncovering mecha-
nisms of biological aging and to discover interventions. These
models can also play a role in understanding biological plausibil-
ity and gradient, which are part of Hill’s causal criteria [108], of
any significant findings in observational settings.

The long history of C. elegans in genetic and neuroscience re-
search provides a rich resource in the pursuit of environmental
drivers of aging. The large number of existing mutant libraries
provides limitless opportunity and their genetic tractability
makes them useful models to find as yet uncharacterized rela-
tionships between exposures and genetic susceptibility.
Caenorhabditis elegans are amenable to high-throughput screens
and have been used by the National Toxicology Program for
this purpose [109]. Studies have found good correspondence
between LD50 values of several toxicants in rodents and C. ele-
gans [110]. An example of the type of high-throughput
approaches is the COPAS biosorter, which is a flow cytometer
that can handle particles as large as C. elegans. The instrument
has been used to screen for reproductive and neurodegenera-
tive toxicants [111–113].

Over decades, researchers have developed several open source
methods that favor the use of C. elegans in aging research. For ex-
ample, the lifespan machine developed by Stroustrup et al. [114]
makes it possible to measure the lifespan of thousands of worms
with significantly reduced human involvement. As another ex-
ample, several researchers have developed methods to study as-
sociative memory in the organism [115]. Additionally, researchers
are able to characterize tissue-specific gene expression [116],
miRNA expression [117], histone modifications [118], and global

metabolism [111, 119]. They are also excellent models to study re-
productive aging and development [113, 120].

Data from whole organisms can be complimented by predic-
tive toxicology, which may provide evidence of exposure, metab-
olism, absorption, and potential toxic effects of exposure using
computational methods. The adverse outcome pathway (AOP)
framework has been used to improve mechanistic understanding
and to predict adverse effects of exposure using existing toxico-
logical evidence [121]. While the use of AOP framework has gen-
erally been limited to individual chemicals, experts have
recommended its use in exposome research by moving from lin-
ear pathways to networks of pathways, thus considering multiple
causes for adverse effects [122]. The use of AOPs in the exposome
context can help create a priori mechanistic links between expo-
sure to mixtures and adverse outcomes relevant to the aging pro-
cess [123].

Measures of aging
The molecular hallmarks of aging [20], established from studies of
cells and model organisms, are difficult to measure in studies of
humans. As a result, there remains no gold standard measure of
human aging, although a range of demographic, clinical, and mo-
lecular methods have been proposed [24, 124]. In demography,
researchers quantify aging at the population level from differences
in mortality rates across chronological ages [125]; in clinical geron-
tology, researchers quantify aging at the patient level from accu-
mulations of chronic diseases and functional deficits [126] and
measures of physical frailty [127]; in the emerging field of gero-
science, which seeks to translate basic science in the biology of ag-
ing to prevent chronic disease [19, 128], researchers quantify aging
using algorithms that summarize omics data to estimate the state
or pace of decline in system integrity, referred to as biological ag-
ing [129–131]. None of these outcomes has yet received substantial
research attention in an exposomic framework. However, early
studies investigating impacts of environmental pollutants suggest
substantial promise [132–135].

Similar to the exposome, these processes change over time,
that is, they evolve over decades. This creates the challenge of
intersecting dynamic exposures to dynamic biological processes,
especially since we are interested in understanding when biologi-
cal aging deviates from chronological aging.

Conclusion
With a rapidly aging global population, understanding the drivers
of aging is more important than ever before. The exposome frame-
work is responsive to the reality of human exposures, they are var-
iable in space and time, and occur concomitantly. In the paper, we
have described some ways in which the exposome framework
could be applied to aging research; however, challenges remain in
capturing profiles of chemicals with: short half-lives, low abun-
dance in the body, and those present in a minor subset of the pop-
ulation. Despite these limitations, using an exposomic framework
can provide a realistic assessment of major environmental drivers
of aging, providing a means to prioritize policies and interventions
that can prevent unhealthy aging. Birth cohorts should be set up
in several locations worldwide to ensure representation of low-
and middle-income countries. International projects like the 1000
genomes project or the HAPMAP project may provide a valuable
template to create exposomics profiles in populations across the
globe [136, 137]. The availability of high-quality assessment of mo-
lecular hallmarks of aging is critical to studying environmental
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drivers of aging and resources must be directed at improving read-
outs of hallmarks of aging. Integration of historical environmental
exposure data with existing population studies has the potential
to accelerate this research agenda.
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118. González-Aguilera C, Palladino F, Askjaer P. C. elegans epige-

netic regulation in development and aging. Brief Funct

Genomics. 2014;13(3):223–234.

119. Kalia V, Niedzwiecki MM, Bradner JM, et al. Cross-species

metabolomic analysis of DDT and Alzheimer’s disease-

associated tau toxicity. bioRxiv 2021; 2021.06.14.448355.

120. Hunt PR, Olejnik N, Bailey KD, Vaught CA, Sprando RL. C. ele-

gans development and activity test detects mammalian de-

velopmental neurotoxins. Food Chem Toxicol. 2018;121:

583–592.

121. Ankley GT, Bennett RS, Erickson RJ, et al. Adverse outcome

pathways: A conceptual framework to support ecotoxicology

research and risk assessment. Environ Toxicol Chem. 2010;

29(3):730–741.

122. Knapen D, Vergauwen L, Villeneuve DL, Ankley GT. The poten-

tial of AOP networks for reproductive and developmental tox-

icity assay development. Reprod Toxicol. 2015;56:52–55.

123. Escher BI, Hackermüller J, Polte T, et al. From the exposome to

mechanistic understanding of chemical-induced adverse

effects. Environ Int. 2017;99:97–106.
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